Саратовский научно-медицинский ЖУРНАЛ

Стероидные соединения растительного происхождения: наукометрическое исследование данных научно-практической литературы.

Год: 2017, том 13 Номер: №1 Страницы: 014-021
Рубрика: Фармакология Тип статьи: Обзор
Авторы: Суханов А.Е., Буюклинская О.В., Коптяева Р.Г.
Организация: ФГБОУ ВО «Северный ГМУ» Минздрава России
Резюме:

Стероидные соединения растительного происхождения имеют важное значение в клинической медицине, оказывают противовоспалительное, антипролиферативное, антитромбическое и другие действия. Однако стероидные соединения растительного происхождения, в частности стероидные сапонины, недостаточно изучены с позиции идентификации в тканях растительных организмов и методов их физико-химического анализа. В обзоре приводится наукометрический анализ научно-исследовательских сведений (реферативных документов), содержащих аналитический массив научных публикаций, относящихся к изолированию, выделению, очистке, идентификации и количественному определению стероидных сапонинов в тканях высших сосудистых растений, в реферативной библиографической базе данных SciVerse Scopus (издательство Elsevier), с использованием критериев «ключевое слово» и «ключевое словосочетание».

Литература:
1. Олейников Д.H. Структурно-функциональное исследование биополимеров растительного и базидиального происхождения и совершенствование методов их анализа: дис. ... д-ра фарм. наук. Улан-Удэ; 2012; 310 с.
2. Rothman ES, Wall ME, Walens H.A. Steroidal sapogenins. IV: Hydrolysis of steroidal saponins. Journal of the American Chemical Society 1952; 74 (22): 5791-5792
3. Rothman ES, Wall ME., Eddy CR. Steroidal sapogenins. Ill: Structure of steroidal saponins. Journal of the American Chemical Society 1952; 74(16): 4013-4016
4. Wall ME, et al. Detection and estimation of steroidal sapogenins in plant tissue. Analytical Chemistry 1952; 24 (8): 1337-1341
5. Krider MM, Wall ME. Steroidal sapogenins. V: Enzymatic hydrolysis of steroidal saponins. Journal of the American Chemical Society 1952; 74 (12): 3201
6. Agrawal PK, Burkholz T, Jacob С Revisit to 25R/25S stereochemical analysis of spirostane-type steroidal sapogenins and steroidal saponins via 1 H NMR chemical shift data. Natural Product Communications 2012; 7 (6): 709-711
7. Hu K, et al. Antineoplastic agents. I: Three spirostanol glycosides from rhizomes of Dioscorea collettii var. hypoglauca. Planta Medica 1996; 62 (6): 573-575
8. Agrawal PK. 25R/25S stereochemistry of spirostane-type steroidal sapogenins and steroidal saponins via chemical shift of geminal protons of ring-F. Magnetic Resonance in Chemistry 2003; 41 (11): 965-968
9. Agrawal PK. Assigning stereodiversity of the 27-Me group of furostane-type steroidal saponins via NMR chemical shifts. Steroids 2005; 70 (10): 715-724
10. Agrawal PK. Dependence of 1 H NMR chemical shifts of geminal protons of glycosyloxy methylene (H2-26) on the orientation of the 27-methyl group of furostane-type steroidal saponins. Magnetic Resonance in Chemistry 2004; 42 (11): 990-993
11. Liu XX. et al. A new spirostanol saponin from the rhizomes of Paris mairei. Chinese Chemical Letters 2009; 20 (7): 820-822
12. Agrawal PK, et al. Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins. Phytochemistry 1985; 24 (11): 2479-2496
13. Pang X, et al. Two new furostanol saponins from the seeds of Trigonella foenum-graecum. Journal of Asian Natural Products Research 2011; 13 (7): 611-617
14. Mahato SB, Ganguly AN, Sahu NP Steroid saponins. Phytochemistry 1982; 21 (5): 959-978
15. Wang Y, et al. Effects of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Animal Feed Science and Technology 1998; 74 (2): 143-153
16. Yan W, et al. Steroidal saponins from fruits of Tribulus terrestris. Phytochemistry 1996; 42 (5): 1417-1422
17. Wu G, et al. Steroidal glycosides from Tribulus terrestris. Phytochemistry 1996; 42 (6): 1677-1681
18. Saito S, et al. New steroidal saponins from the rhizomes of Anemarrhena asphodeloides BUNGE (Liliaceae). Chemical and Pharmaceutical Bulletin 1994; 42 (11): 2342-2345
19. Li X-C, Wang D-Z, Yang C-R. Steroidal saponins from Chlorophytum malayense. Phytochemistry 1990; 29 (12): 3893-3898
20. Kitagawa I, Kobayashi M. Saponin and sapogenol. XXVI: Steroidal saponins from the starfish Acanthaster planci L. (Crown of Thorns). (2) Structure of the major saponin thornasteroside A. Chemical and Pharmaceutical Bulletin 1978; 26(6): 1864-1873
21. Pettit GR, et al. Isolation and structure of cytostatic steroidal saponins from the African medicinal plant Balanites aegyptica. Journal of Natural Products 1991; 54 (6): 1491-1502
22. Yokosuka A, Mimaki Y, Sashida Y Spirostanol saponins from the rhizomes of Tacca chantrieri and their cytotoxic activity. Phytochemistry 2002; 61 (1): 73-78
23. Mahmood U, Agrawal KP, Thakur SR. Torvonin-A, a spirostane saponin from Solanum torvum leaves. Phytochemistry 1985; 24 (10): 2456-2457
24. Mimaki Y, Sashida Y Steroidal saponins from the bulbs of Lilium brownii. Phytochemistry 1990; 29 (7): 2267-2271
25. Kesselmeier J, Urban B. Subcellular localization of saponins in green and etiolated leaves and green protoplasts of oat (Avena sativa L.). Protoplasma 1983; 114(1-2): 133-140
26. Ikegami S, Okano K, Muragaki H. Structure of glycoside B2, a steroidal saponin in the ovary of the starfish, Asterias amurensis. Tetrahedron Letters 1979; 20 (20): 1769-1772
27. Kostadinova EP, et al. Phenylethanoids, iridoids and a spirostanol saponin from Veronica turrilliana. Phytochemistry 2007; 68 (9): 1321-1326
28. Mahato SB, Sahu NP, Ganguly AN. Steroidal saponins from Dioscorea floribunda: Structures of floribundasaponins A and B. Phytochemistry 1981; 20 (8): 1943-1946
29. Sharma SC, Chand R, Sati OP. Steroidal saponins of Asparagus adscendens. Phytochemistry 1982; 21 (8): 2075-2078
30. Agrawal PK. A systematic NMR approach for the determination of the molecular structure of steroidal saponins. Advances in Experimental Medicine and Biology 1996; 405: 299-315
31. ChallinorVL, PiacenteS, De Voss JJ. NMR assignment of the absolute configuration of C-25 in furostanol steroidal saponins. Steroids 2012; 77 (6): 602-608
32. Guo Z, et al. Structural elucidation and NMR spectral assignment of three new furostanol saponins from the roots of Tupistra chinensis. Magnetic Resonance in Chemistry 2009; 47 (7): 613-616
33. Hwang IH, et al. Complete NMR assignments of undegraded asterosaponins from Asterias amurensis. Archives of Pharmacal Research 2014; 37 (10): 1252-1263
34. Kang L-P, et al. Structure elucidation and complete NMR spectral assignments of glucosylated saponins of cantalasaponin I. Magnetic Resonance in Chemistry 2012; 50 (1): 79-83
35. Plock A, et al. Application of MS and NMR to the structure elucidation of complex sugar moieties of natural products: Exemplified by the steroidal saponin from Yucca filamentosa L. Phytochemistry 2001; 57 (3): 489-496
36. Suo M, Yang J. Complete assignments of 1H and 13C NMR spectroscopic data for three new stigmastane glycosides from Vernonia cumingiana. Magnetic Resonance in Chemistry 2009; 47 (2): 179-183
37. Teponno RB, et al. Isolation and NMR assignment of a pennogenin glycoside from Dioscorea bulbifera L. var sativa. Natural Product Sciences 2006; 12 (1): 62-66
38. Zou K, et al. Structural elucidation of four new furostanol saponins from Tupistra chinensis by 1 D and 2D NMR spectroscopy. Magnetic Resonance in Chemistry 2009; 47 (1): 87-91
39. Duckstein SM, Stintzing FC. Comprehensive study of the phenolics and saponins from Helleborus niger L. leaves and stems by liquid chromatography / tandem mass spectrometry Chemistry and Biodiversity 2014; 11 (2): 276-298
40. Kong TY, at al. Liquid chromatography — tandem mass spectrometry for quantification of dioscin in rat plasma. Mass Spectrometry Letters 2013; 4 (3): 55-58
41. Liu Z, et al. Development and validation of liquid chromatography-tandem mass spectrometry method for simultaneous determination of six steroidal saponins in rat plasma and its application to a pharmacokinetics study. Steroids 2015;96:21-29
42. Patil D,etal. HPLC/Tandemmassspectrometricstudies on steroidal saponins: An example of quantitative determination of shatavarin IV from dietary supplements containing Asparagus racemosus. Journal of AOAC International 2014; 97 (6): 1497-1502
43. Sun Y, et al. Simultaneous determination of nine components in Anemarrhena asphodeloides by liquid chromatography — tandem mass spectrometry combined with chemometric techniques. Journal of Separation Science 2012; 35(14): 1796-1807
44. Wang B, et al. Liquid chromatography tandem mass spectrometry in study of the pharmacokinetics of six steroidal saponins in rats. Steroids 2013; 78 (12-13): 1164-1170
45. Wang Y, Xu J, Qu H. Determination of three steroidal saponins from Ophiopogon japonicus (Liliaceae) via high performance liquid chromatography with mass spectrometry. Natural Product Research 2013; 27 (1): 72-75
46. Ji X, Feng YF, Rui W. Rapid analysis of xanthones and steroidal saponins in extract of rhizoma anemarrhenae by ultraperformance liquid chromatography / quadrupole-time-of-flight mass spectrometry. Proceedings-2012 International Conference on Biomedical Engineering and Biotechnology 2012; art. no. 6245158:477-485
47. Tang Y, et al. Quantitative comparison of multiple components in Dioscorea nipponica and D. panthaica by ultrahigh performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Phytochemical Analysis 2013; 24 (4): 413-422
48. Zhao Y, et al. Structure characterization and identification of steroidal saponins from the rhizomes of Anemarrhena asphodeloides by ultra performance liquid chromatography and hybrid quadrupole time-of-flight mass spectrometry. International journal of mass spectrometry 2013; 341-342:7-17
49. Zhu H, et al. Metabolic profiles of dioscin in rats revealed by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Biomedical Chromatography 2015; 29 (9): 1415-1421
50. Ganzera M, Bedir E, Khan IA. Determination of steroidal saponins in Tribulus terrestris by reversed-phase high-performance liquid chromatography and evaporative light scattering detection. Journal of Pharmaceutical Sciences 2001; 90(11): 1752-1758
51. Liang M, et al. Identification and quantification of C21 steroidal saponins from Radix Cynanchi atrati by high performance liquid chromatography with evaporative light scattering detection and electrospray mass spectrometric detection. Phytochemical Analysis 2007; 18 (5): 428-435
52. Lin J-T, et al. Simultaneous determination of furostanol, pennogenyl, and diosgenyl glycosides in Taiwanese rhizoma paridis (Paris formosana Hayata) by high-performance liquid chromatography with evaporative light scattering detection. Journal of Agricultural and Food Chemistry 2011; 59 (5): 1587-1593
53. Ma Q, Luo J, Kong L. Preparative isolation of steroidal saponins from garlic (Allium sativum L.) using high-speed countercurrent chromatography coupled with evaporative light scattering detection. Journal of Liquid Chromatography and Related Technologies 2011; (17): 1997-2007
54. Xiao X-H, Yuan Z-Q., Li G.-K. Separation and purification of steroidal saponins from Paris polyphylla by microwave-assisted extraction coupled with countercurrent chromatography using evaporative light scattering detection. Journal of Separation Science 2014; 37 (6): 635-641
55. Yoon KD,etal. Application of high-speed countercurrent chromatography-evaporative light scattering detection for the separation of seven steroidal saponins from Dioscorea villosa. Phytochemical Analysis 2012; 23 (5): 462-468
56. Wang B, et al. Separation and characterization of steroidal saponins in Paris pllyphylla by high-performance liquid chromatography coupled with time-of-flight mass spectrometry and ion trap mass spectrometry. Journal of Liquid Chromatography and Related Technologies 2013; 36 (12): 1661-1677
57. Wang Y, Xu J, Qu H. Structure characterization and identification steroidal saponins from Ophiopogon japonicus Ker-Gawler (Liliaceae) by high-performance liquid chromatography with ion trap mass spectrometry. Phytochemical Analysis 2011; 22(2): 166-171
58. Lin S, et al. Characterization of steroidal saponins in crude extract from Dioscorea nipponica Makino by liquid chromatography tandem multi-stage mass spectrometry. Analytica Chimica Acta 2007; 599 (1): 98-106
59. Man S, et al. Characterization of steroidal saponins in saponin extract from Paris polyphylla by liquid chromatography tandem multi-stage mass spectrometry. Analytical and Bioanalytical Chemistry 2009; 395 (2): 495-505
60. Ji HW, Ding XL, Tao GJ. Screening of steroidal saponins from the bulbs of Lilium brownii var. colchesteri by combination of high performance liquid chromatography-electrospray ionization mass spectrometry and electron impact mass spectrometry. Se pu = Chinese journal of chromatography Zhongguo hua xue hui2001; 19 (5): 403-406
61. Liu H, et al. Detection of saponins in extracts from the rhizomes of Paris species and prepared Chinese medicines by high performance liquid chromatography — electrospray ionization mass spectrometry. Planta Medica 2006; 72 (9): 835-841
62. Choi S-J, et al. Application of high-performance countercurrent chromatography for the isolation of steroidal saponins from Liriope plathyphylla. Journal of Separation Science 2015; 38(1): 18-24
63. Kwon Y-K, et al. Rapid metabolic discrimination and prediction of dioscin content from African yam tubers using Fourier transform-infrared spectroscopy combined with multivariate analysis. Food Chemistry 2015; 166: 389-396
64. Liang F, et al. Structural characterization of steroidal saponins by electrospray ionization and fast-atom bombardment tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2002; 16 (12): 1168-1173
65. Liang Y, et al. Structural characterization of steroidal saponins from Smilax trinervula using ultra highperformance liquid chromatography coupled with LTQ-Orbitrap mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2015; 974: 75-82
66. Kimura M, et al. Quantitative analysis of sugar components in steroidal saponins by gas liquid chromatography. Chemical and Pharmaceutical Bulletin 1968; 16 (4): 613-617
67. Pathberiya LG, Senadheera NS, Jansz ER. Variation of dietary fibre content and gel-chromatography profile of the fruit pulp of four morphologically different fruit types of palmyrah. Journal of the National Science Foundation of Sri Lanka 2007; 35 (1): 49-51
68. Wang Y, McAllister ТА. A modified spectrophotometric assay to estimate deglycosylation of steroidal saponin to sapogenin by mixed ruminal microbes. Journal of the Science of Food and Agriculture 2010; 90 (11): 1811-1818
69. Wang L, et al. Simultaneous analysis of diosgenin and sarsasapogenin in Asparagus officinalis byproduct by thin layer chromatography. Phytochemical Analysis 2011; 22 (1): 14-17
70. Zhao Y, et al. Analytical and semipreparative separation of 25 (R/S) — spirostanol saponin diastereomers using supercritical fluid chromatography. Journal of Separation Science 2013; 36 (19): 3270-3276. 71. Wu F, et al. Rapid and global detection and characterization of the constituents in Sheng Mai San by ultraperformance liquid chromatography-high-definition mass spectrometry. Journal of Separation Science 2011; 34 (22): 3194-3199.

Прикрепленный файлРазмер
2017_01_014-021.pdf526.09 кб

Голосов пока нет